Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search

نویسندگان

  • Tom Pepels
  • Tristan Cazenave
  • Mark H. M. Winands
  • Marc Lanctot
چکیده

Regret minimization is important in both the Multi-Armed Bandit problem and Monte-Carlo Tree Search (MCTS). Recently, simple regret, i.e., the regret of not recommending the best action, has been proposed as an alternative to cumulative regret in MCTS, i.e., regret accumulated over time. Each type of regret is appropriate in different contexts. Although the majority of MCTS research applies the UCT selection policy for minimizing cumulative regret in the tree, this paper introduces a new MCTS variant, Hybrid MCTS (H-MCTS), which minimizes both types of regret in different parts of the tree. H-MCTS uses SHOT, a recursive version of Sequential Halving, to minimize simple regret near the root, and UCT when descending further down the tree. We discuss the motivation for this new search technique, and show the performance of H-MCTS in six distinct two-player games: Amazons, AtariGo, Ataxx, Breakthrough, NoGo, and Pentalath.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Selection Methods for Monte-carlo Tree Search

Preface In this thesis I present the result of my investigation into regret minimization for Monte-Carlo Tree Search. The thesis presents the motivation, background, and formal definition of a novel search technique based on minimizing both simple and cumulative regret in a game tree: Hybrid MCTS (H-MCTS). The technique minimizes the two types of regret in a single search-tree. This ensures tha...

متن کامل

Asymmetric Move Selection Strategies in Monte-Carlo Tree Search: Minimizing the Simple Regret at Max Nodes

The combination of multi-armed bandit (MAB) algorithms with Monte-Carlo tree search (MCTS) has made a significant impact in various research fields. The UCT algorithm, which combines the UCB bandit algorithm with MCTS, is a good example of the success of this combination. The recent breakthrough made by AlphaGo, which incorporates convolutional neural networks with bandit algorithms in MCTS, al...

متن کامل

Doing Better Than UCT: Rational Monte Carlo Sampling in Trees

UCT, a state-of-the art algorithm for Monte Carlo tree sampling (MCTS), is based on UCB, a sampling policy for the Multi-armed Bandit Problem (MAB) that minimizes the accumulated regret. However, MCTS differs from MAB in that only the final choice, rather than all arm pulls, brings a reward, that is, the simple regret, as opposite to the cumulative regret, must be minimized. This ongoing work a...

متن کامل

MCTS Based on Simple Regret

UCT, a state-of-the art algorithm for Monte Carlo tree search (MCTS) in games and Markov decision processes, is based on UCB, a sampling policy for the Multi-armed Bandit problem (MAB) that minimizes the cumulative regret. However, search differs from MAB in that in MCTS it is usually only the final “arm pull” (the actual move selection) that collects a reward, rather than all “arm pulls”. Ther...

متن کامل

Omputation and D Ecision - M Aking in L Arge E Xtensive F Orm G Ames

In this thesis, we investigate the problem of decision-making in large two-player zero-sumgames using Monte Carlo sampling and regret minimization methods. We demonstrate fourmajor contributions. The first is Monte Carlo Counterfactual Regret Minimization (MC-CFR): a generic family of sample-based algorithms that compute near-optimal equilibriumstrategies. Secondly, we develop a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014